Basics of SIR Models

Some Terms

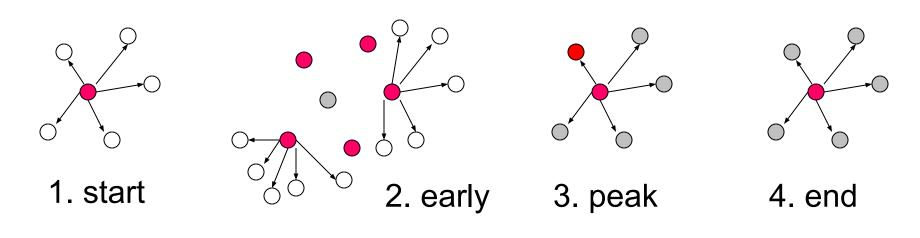
Closed v Open populations

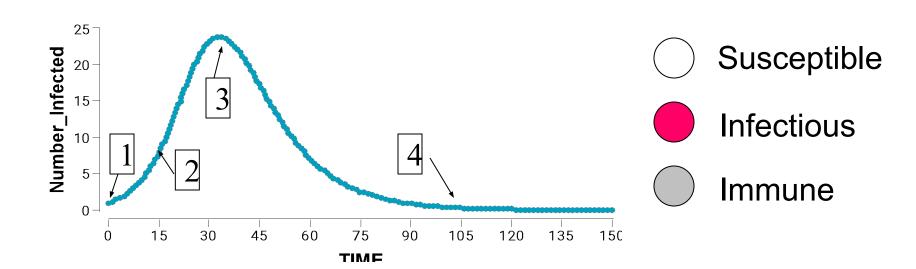
- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

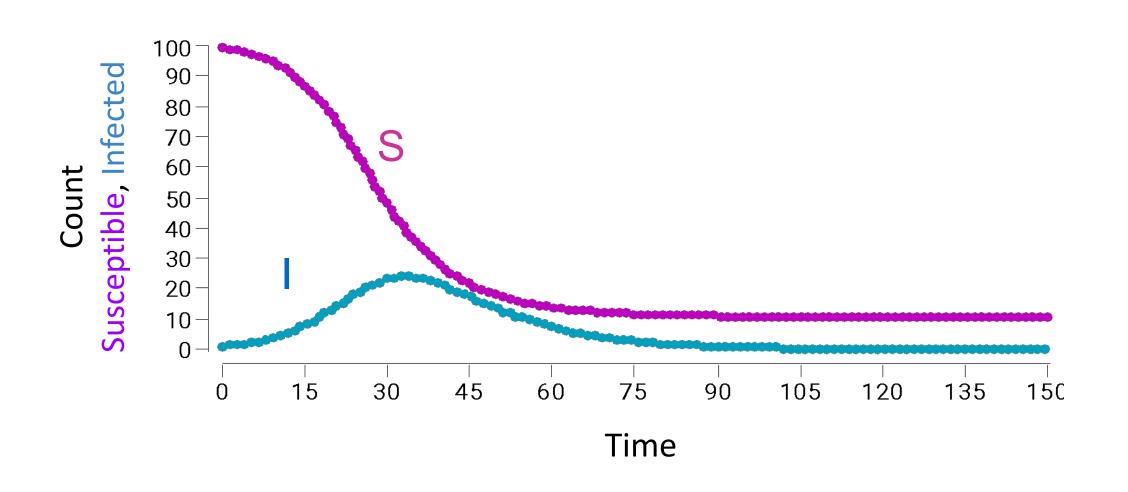
- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- Dynamics are transient if the states are continuing to change ... more nuance later

Phases of an Epidemic

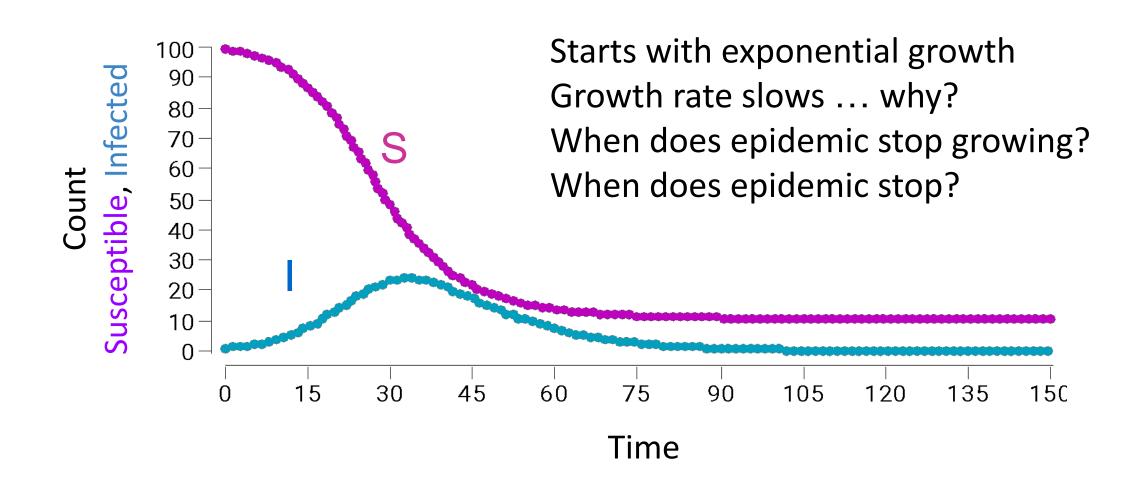




Idealized Epidemic in a Closed Community



Idealized Epidemic in a Closed Community



$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

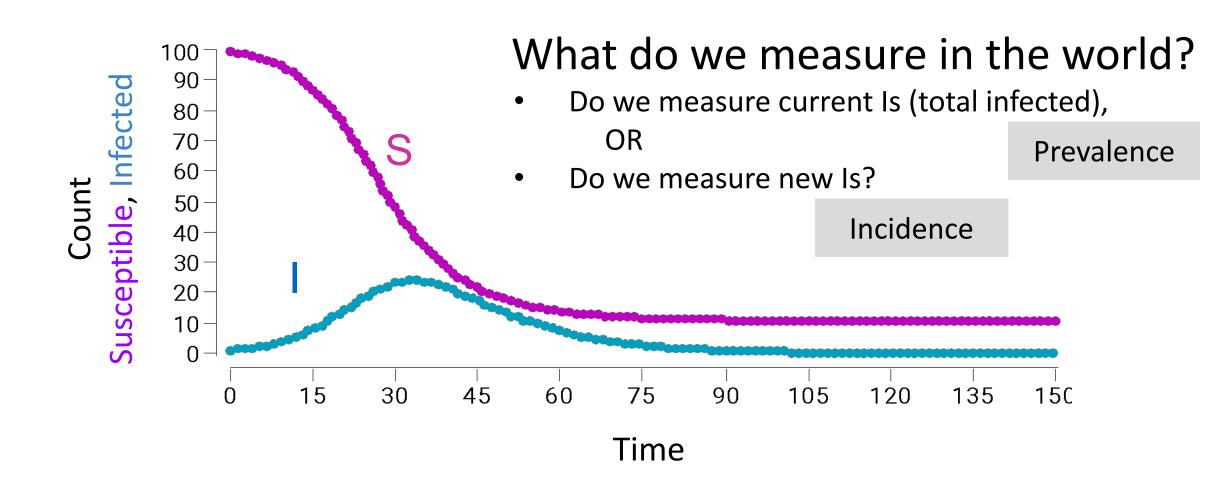
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

The States

S, I, and R reflect the number of individuals that are currently susceptible, infected (and infectious), and recovered, respectively

Idealized Epidemic in a Closed Community

Idealized Epidemic in a Closed Community



$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

What do we measure in the world?

- Do we measure current Is (total infected),
 OR
- Do we measure new Is?

How could we measure current Is? How could we measure new Is?

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Contact Process

- This quantifies the rate at which susceptibles and infecteds interact
 - Increases with number (or proportion) of each
 - Creates non-linearity

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Contact Process

• There are lots of ways to adjust this ... the most (in)famous of which is: $S \frac{I}{N}$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Contact Process

 What other ways might contacts change with the amount of infection?

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Transmission Parameter

- SI defines the shape of contacts. β turns that into infectious contacts:
 - Rate of infectious contacts (not all contacts are infectious)
 - Probability of infection given contact

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Recovery Rate

- This is the rate, number per time, of recovery (or removal)
- If rate is high, many events happen per unit time and time between events is small

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Recovery Rate

- This is the rate, number per time, of recovery (or removal)
- So γ large means that the average duration of infection is short

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

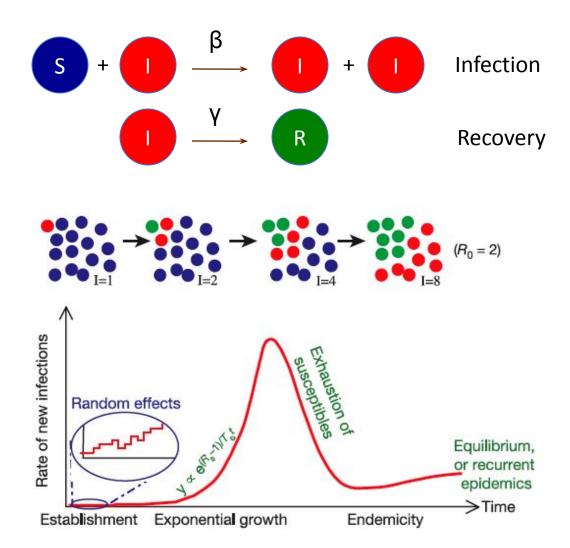
Recovery Rate

- This is the rate, number per time, of recovery (or removal)
- Mean duration of infection,

L, is
$$\frac{1}{\gamma}$$
 IF the distribution of infectious periods is exponential

How realistic is this? Why do we do this?

Basic Epidemic Theory



$$\frac{dS}{dt} = -\beta SI$$

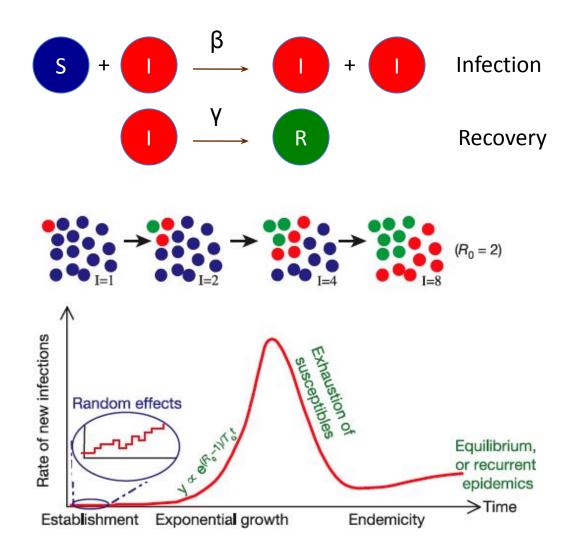
$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

At the start, when there are few infections, an epidemic grows (almost) exponentially

figures from Ferguson et al. *Nature* 2003

Basic Epidemic Theory



$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = -\beta SI - \gamma I$$

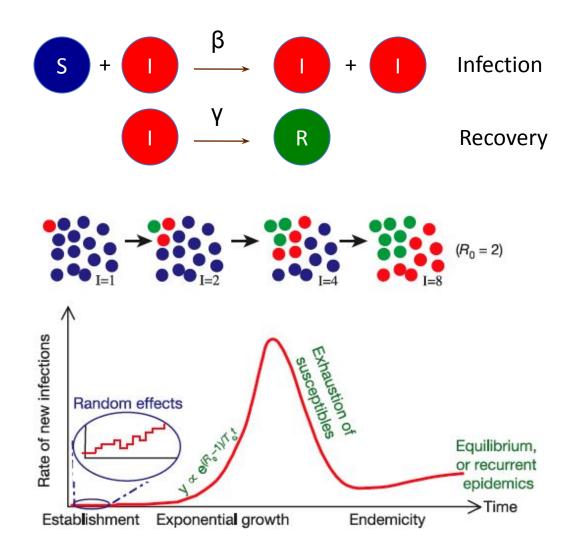
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

At the start, when there are few infections, an epidemic grows (almost) exponentially

We'll use this property later to estimate the transmission rate

figures from Ferguson et al. *Nature* 2003

Basic Epidemic Theory



$$\frac{dS}{dt} = -\beta SI$$

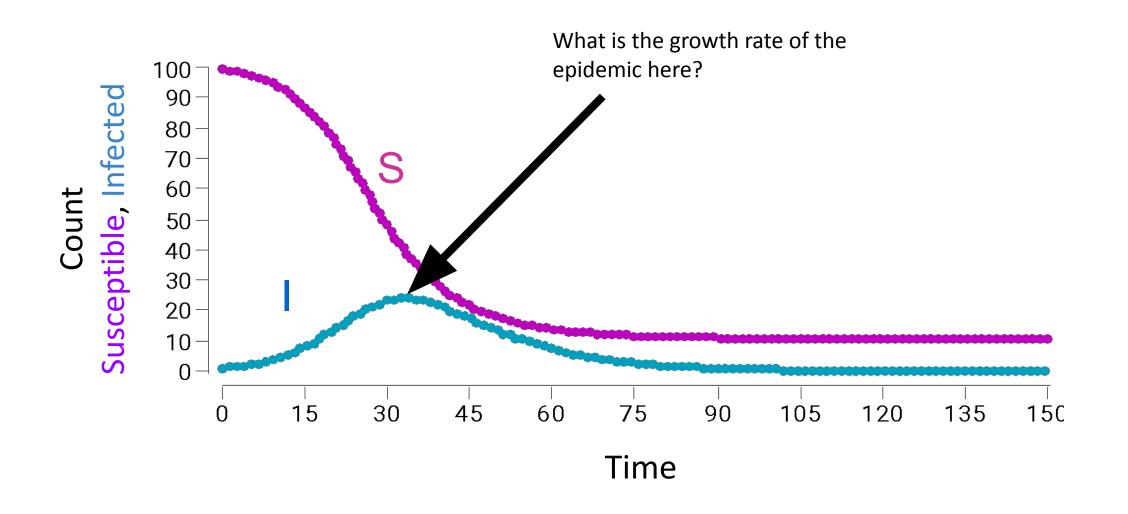
$$\frac{dI}{dt} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

As individuals recover and the number susceptible declines that growth slows because
Susceptibles are being depleted

When does epidemic stop growing?

Idealized Epidemic in a Closed Community



$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma I$$

$$\beta S = \gamma$$

$$1 = \beta S$$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \beta S$$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \beta S$$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \beta S$$

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \frac{\beta S}{\gamma}$$
Condition under which I doesn't change

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \frac{\beta S}{\gamma}$$
Condition under which I doesn't change

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 > \beta SI - \gamma I$$

$$0 > \beta S - \gamma$$

$$\beta S < \gamma$$

$$1 > \frac{\beta S}{\gamma}$$
Condition under which I declines ... epidemic fades

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 < \beta SI - \gamma I$$

$$0 < \beta S - \gamma$$

$$\beta S > \gamma$$

$$1 < \frac{\beta S}{\gamma}$$
Condition under which I grows ... epidemic grows

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dI} = -\beta SI - \gamma I$$

$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 < \beta SI - \gamma I$$

$$0 < \beta S - \gamma$$

$$\beta S > \gamma$$

$$1 < \beta SL$$
Recall that

Recall that $\frac{1}{\gamma} = L$ is the mean duration of infection

R_o: The Basic Reproduction Number

$$R_0 = \frac{\beta S}{\gamma} = \beta S L$$

The expected number of new infections due to the first infection in a susceptible population

- A common currency
 - A function of the pathogen and the population (recall what β is)
 - Rarely observable directly
 - But closely related to many observable phenomena, as we'll see

Estimated values of R0 for various infections

Measles	England	1947	13-14
	Nigeria	1968	16-17
	Kansas	1920	5-6
Pertussis	England	1944-78	16-18
	Canada	1912	7-8
Chickenpox	USA	1912	7-8
	USA	1944	10-11

What Does This Mean for Interventions?

$$R_0 = \frac{\beta S}{\gamma} = \beta S L$$

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S

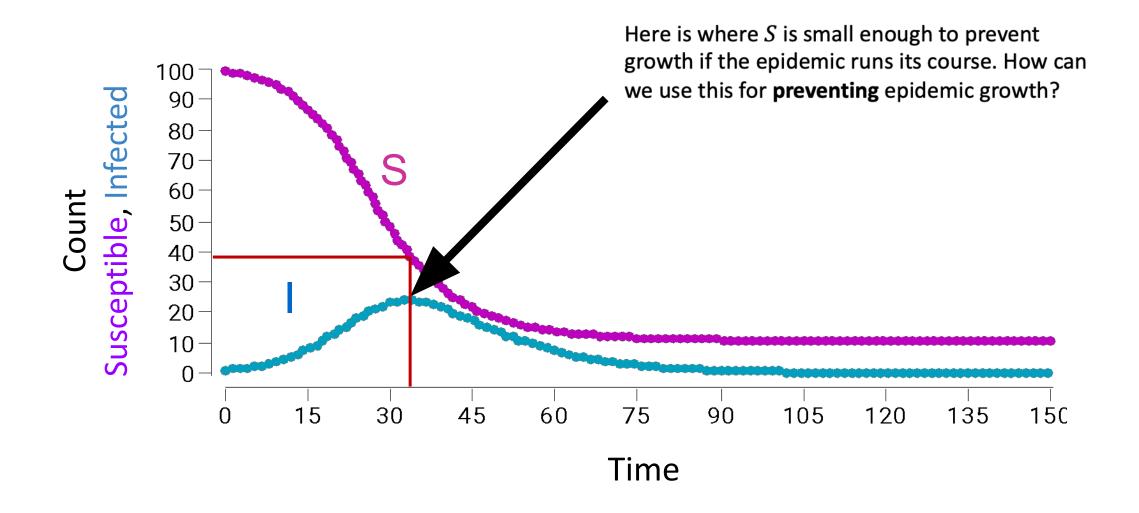
What Does This Mean for Interventions?

$$R_0 = \frac{\beta S}{\gamma} = \beta S L$$

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S

Idealized Epidemic in a Closed Community



R_F: The Effective Reproduction Number

$$R_E = \frac{\beta pS}{\gamma} = \beta pSL$$

p is the fraction susceptible1-p is the fraction immune

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S

The expected number of new infections due to each infection in a population with some immunity

$$R_{0} = \frac{\beta S}{\gamma} = \beta SL$$

$$R_{0} = \beta SL$$

$$1 = \frac{\beta SL}{R_{0}}$$

$$1 = \frac{1}{R_{0}}S\beta L$$

What fraction of Susceptibles need to be immune in order for

$$\frac{1}{R_0}S$$

to remain?

$$R_{0} = \frac{\beta S}{\gamma} = \beta SL$$

$$R_{0} = \beta SL$$

$$1 = \frac{\beta SL}{R_{0}}$$

$$1 = \frac{1}{R_{0}}S\beta L$$

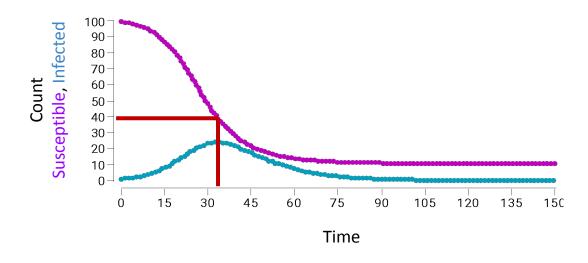
What fraction of Susceptibles need to be immune in order for

$$\frac{1}{R_0}S$$

to remain?

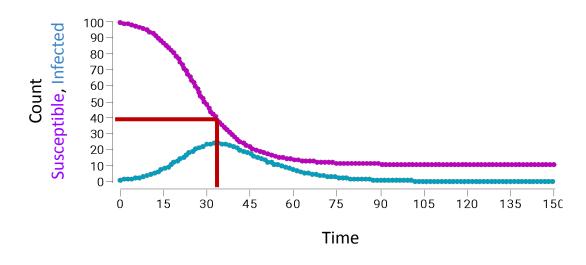
$$T_c = 1 - \frac{1}{R_0}$$

If $T_c = 1 - \frac{1}{R_0}$ are immune **before** an outbreak then it won't be able to grow (on average)



If an outbreak takes off it **WILL NOT** stop when $T_c = 1 - \frac{1}{R_0}$ are immune

If $T_c = 1 - \frac{1}{R_0}$ are immune **before** an outbreak then it won't be able to grow (on average)



If an outbreak takes off it **WILL NOT** stop when $T_c = 1 - \frac{1}{R_0}$ are immune

Why not?

Final Size Calculation

$$R_{\infty} = 1 - e^{-R_0 R_{\infty}}$$

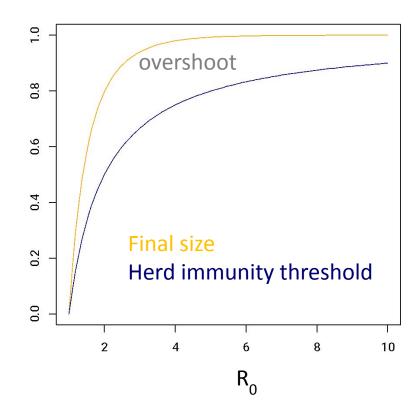
Where R_{∞} is the proportion of the population infected at the end of the epidemic (the proportion in the R class at the end)

Citation:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/

Comparing T_c and Final Size

Many more individuals will become infected in an epidemic (on average) than need to be immunized **BEFORE** an epidemic

Herd Immunity is a relevant concept throughout an epidemic (and helps stop them), the Herd Immunity Threshold is only relevant for preventing, not stopping outbreaks.



What Happens When Births Are Added?

$$\frac{dS}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta S$$

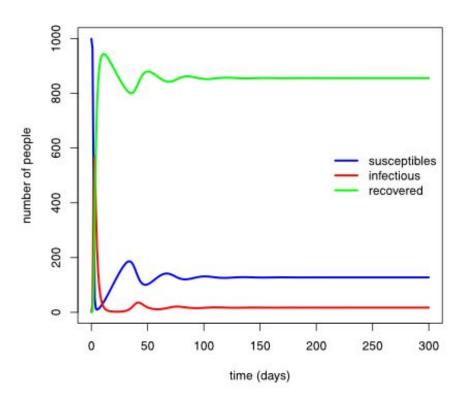
$$\frac{dI}{dI} = \delta N - \beta SI - \gamma I - \alpha I - \delta I$$

$$\frac{dR}{dt} = \delta N - \beta SI - \gamma I - \alpha R - \delta R$$

 δ is birth and death rate α is disease induced death rate

Dynamics Over Time

Note that after initial overshoot, susceptibles build back up until a new outbreak occurs, the second is smaller, and the third smaller than that



Some Terms

Closed v Open populations

- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- Dynamics are transient if the states are continuing to change ... more nuance later (really)

When Does / Stop Growing?

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \delta I$$

$$0 < \beta SI - \gamma I - \alpha I - \delta I$$

$$\beta SI > \gamma I + \alpha I + \delta I$$

$$\beta S > \gamma + \alpha + \delta$$

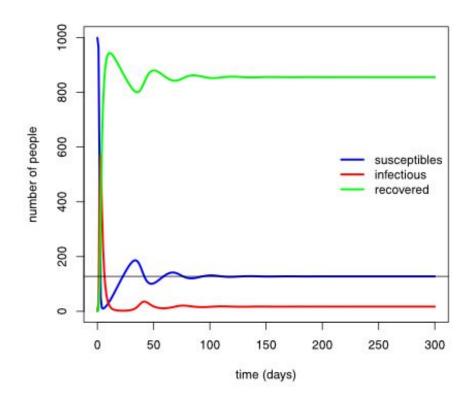
$$1 < \frac{\beta S}{\gamma + \alpha + \delta} \equiv R_0$$

 δ is birth and death rate α is disease induced death rate

Equilibrium Dynamics

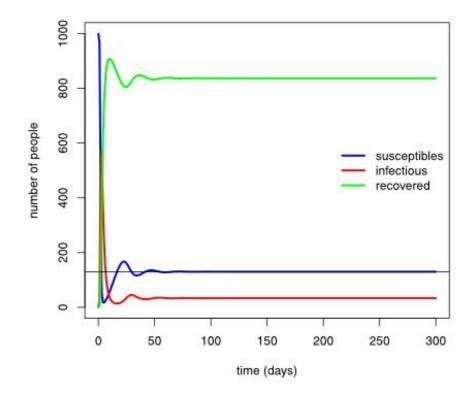
The stable equilibrium proportion susceptible is

$$\sim 1 - \frac{1}{R_0}$$



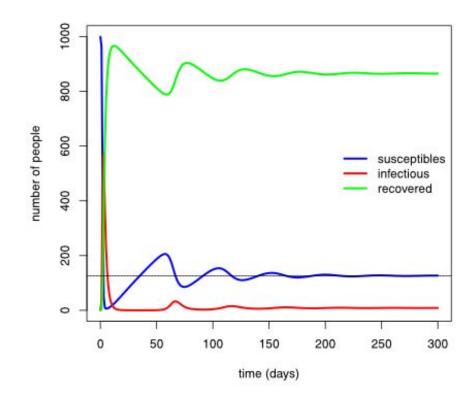
Birth Rate Changes the Speed to Equilibrium

If we increase the birth rate, it takes less time to reach equilibrium under the assumption that the population isn't growing



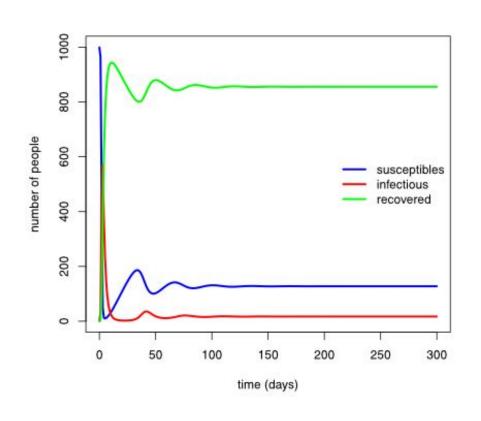
Birth Rate Changes the Speed to Equilibrium

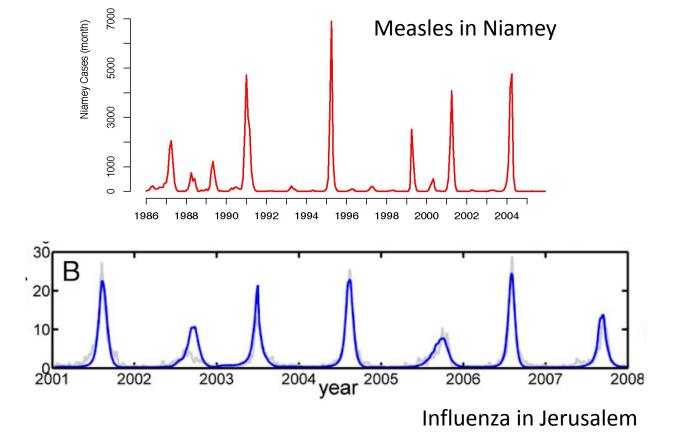
If we decrease the birth rate, it takes longer to reach equilibrium under the assumption that the population isn't growing



What about growing populations?

- Growing populations have more susceptibles added than recovereds being taken away (by death)
 - So a greater fraction susceptible, less indirect protection, and more transmission
- More of those susceptibles are young, so if young and old have different contact rates, then transmission and dynamics will differ in young vs. old populations ...





Some Terms

Closed v Open populations

- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- An *attractor* is collection of states towards which a system tends it's regular and predictable, but not static.
- Dynamics are transient if the states are continuing to change

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples

Influenza

Lassa fever

Legionellosis

Leptospirosis

Meningococcal meningitis

Polio

Typhoid

 Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in

- Environmental conditions
- Behavior
- Population movement/aggregation
- Vector seasonality

Examples

Chickenpox

Measles

Pertussis

Rubella

 Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in

_	Environmental	l conditions
		COMMITTEE

- Behavior
- Population movement/aggregation
- Vector seasonality

Examples	Examples	
Influenza	Chickenpox	
Lassa fever	Measles	
Legionellosis	Pertussis	
Leptospirosis	Rubella	
Meningococcal meningitis		
Polio		
Typhoid		

Modeled as a temporal change in β

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples

Measles

Meningococcal meningitis

Modeled as a temporal change in β or S

 Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in

- Environmental conditions
- Behavior
- Population movement/aggregation
- Vector seasonality

Examples

Chikungunya

Dengue

Malaria

Trypanosomiasis

West Nile Virus

Yellow Fever

Requires a new compartment for the vector populations