Age Structure



* Connection to previous lecture
* Balance of birth and death rates creates population structure

* Longer life means a greater fraction of population is likely to be immune and
can contribute to herd immunity

* Many births and high death rate means that most of the population is in the
susceptible class and can contribute to transmission



RO and Age

* Remember relationship between rate of recovery and duration of
infection (or time to recovery)

* Average time to an event is the inverse of its rate

* Relation between mean age of infection and R |

* R, reflects the rate of infection, mean age is the average time from birth to
infection

* Basic calculation requires strong assumption that age-specific force of
infection is constant

* What does this mean for control?
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Observation About Mean Age of Infection
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RO and Age

 Remember relationship between rate of recovery and duration of
infection (or time to recovery)

* Average time to an event is the inverse of its rate

* Relation between mean age of infection and R
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RO and Age

* Remember relationship between rate of recovery and duration of
infection (or time to recovery)

e Average time to an event is the inverse of its rate

* Relation between mean age of infection and R

* R, reflects the rate of infection, mean age is the average time from birth to
infection

* Basic calculation requires strong assumption that age-specific force of
infection is constant

* What evidence do we have that this is or IS NOT the case?

* What does this mean for control?



Age-related contact patterns
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Age-related contact patterns
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Age-related contact patterns

PLOS COMPUTATIONAL BIOLOGY

& OPEN ACCESS ‘_ PEER-REVIEWED

RESEARCH ARTICLE

Projecting contact matrices in 177 geographical regions: An
update and comparison with empirical data for the COVID-
19 era

Kiesha Prem, Kevin van Zandvoort, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies,
Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group E3, Alex R. Cook, Mark Jit [E]

How diary studies relate to transmissible contacts is
unclear

The applicability of these matrices to different pathogens
and modes of transmission is still uncertain




Estimated FOI — Catalytic model
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Inference from Age Distribution of Cases

e Differences in behavior and exposure result in age-specific risk, or
force of infection

 The likelihood of observing a case at age A is related to the integral
of all risk prior to A

* Basis of the catalytic model

e @Griffiths (1974)
 Grenfell and Anderson (1985)



Catalytic Model
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Catalytic Model

Force of Infection
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The age specific Force of Infection
is the rate at which individuals of
each age are exposed to infection

The shape of this function reflects
the absolute risk (height) and the

age ranges over which infection is
most likely (breadth of the curve)

How does this differ from the WAIFW matrix?

How does this differ from diary studies?
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Fitting the Catalytic Model

eSe rological Data ¢(a)=force of infection at age a
P(sero(+)|age)=1—-exp (—T qb(x)dxj

#sero(+),., ~ binomial(N

tested, age®

P(sero(+)| age))

age

* Case Data
» Expected age distribution of cases is a function of:
* Remaining susceptible by age a
* Force of infection at age a, conditional on remaining susceptible

* Grenfell and Anderson (1985)

 Multinomial likelihood



Age Distribution in Jiangsu
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Age Distribution in Jiangsu
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Age Distribution in Jiangsu
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Pattern Consistent Across China
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Provincial Variation
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Transmission, Severity, and
Control



* Most severe in the young:
* Measles, pertussis, diphtheria

* Most severe in the elderly
* COVID-19

* Most severe in the young AND the elderly
* Influenza

* Most severe in intermediate ages
e Zika virus, rubella — severe complications in pregnancy



COVID-19 and transition to endemicity
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What does this mean for the
future of disease severity?

primary cases being restricted to younger age groups. Parameters for simulations:
o =1and p = 0.7. (B) Time for the average IFR (6-month moving average) to fall to
0.001, which is the IFR associated with seasonal influenza. Gray areas represent
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different colors), and the transition from epidemic to endemic dynamics results in

immunity becomes shorter. Results are shown for p = 0.7. See SM section 2.3 and

CORONAVIRUS
figs. S4 to S7 for sensitivity analyses and model specifications.

Immunological characteristics govern the transition
of COVID-19 to endemicity

Jennie S. Lavine, Ottar N. Bjornstad?, Rustom Antia'



Rubella and CRS

* Rubella is a directly transmitted virus with R S of 4-8 in endemic
regions

* Infections in children and adults are mild

* Infections during first trimester of pregnancy can lead to serious

complications (Congenital Rubella Syndrome, CRS)
* Deafness

* Blindness
e Congenital heart disease



Introduction of Rubella Containing Vaccine

Strategies for implementation

Introduction of RCV into childhood immunization
programmes implies a long-term commitment to
achieving and maintaining sufficient immunization
coverage to ensure sustained population immunity and
thereby avoid a paradoxical epidemiological effect. Low
coverage of rubella vaccination of infants and young
children can reduce but not interrupt the circulation of
rubella virus, ultimately resulting in increased suscep-
tibility of women of reproductive age (WRA). This may
increase the risk of CRS above that which existed before
introduction of the vaccine (a paradoxical effect; see
section on Epidemiological impact of rubella vaccina-
tion). If vaccination coverage is sufficiently high (gener-
ally estimated to be >80% in each birth cohort), rubella
transmission will be markedly reduced or interrupted,

thereby reducing the risk of exposure of pregnant
women. However, as it is recommended that RCV be
provided in combination with measles vaccine, and
measles elimination requires >95% coverage, the goal
for rubella vaccination coverage should also be >95%.

Countries that are planning to introduce RCVs should
have 2>80% coverage with the first dose of measles
vaccine during routine immunization and/or campaigns
to demonstrate their ability to achieve these levels of
RCV coverage and thereby avoid the previously
mentioned paradoxical effect. RCV coverage that
remains <80% over the long term is expected to shift
infection to older ages, when the risk of CRS is highest.
The recommended vaccination strategy is to begin with
an MR vaccination campaign targeting both sexes and
a wide age range (e.g. 9 months-15 years), based on the



Age Dynamics Following RCV Introduction
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CRS cases per 1000 live births
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CRS: Congenital Rubella Syndrome (brain damage, deafness,
blindness in children born to women who were infected
during the first trimester)
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80% Rule for Rubella Vaccine Introduction

* A single policy recommendation is convenient, but dynamics suggest
that the optimal strategy for introduction is highly dependent on
* Local vaccination coverage
* Local transmission rate
* Local age-specific maternity



