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SPECTRUM OF MODELS

There is a spectrum of models ranging from purely theoretical models to fully data
driven models. They differ by the amount of data integration into the model itself and
the level to which the model is fit to data
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Let u(a) denote the i)robabilitil for a newborn indi-
vidual to be alive and susceptible at age a. Then u(a) satisfies the differential equation

du
da = ~Ha) + p(a)lu, )
with the initial condition #(0) = 1.
The probability w(a) to be immune and alive is given by
dw
3a = |1~ c(@)lAa)u(a) — p(a)w, )
with the initial condition w(0) = 0.
The solutions of these equations are

u(a) = exp { — [4(a) + M(a)]}, ©)

Susceptible ==  Immune
s(@a)

1#(0) +[1-s(a)1Aa) l u(a)

Fig. 2. States and transitions of Bernoulli’s epidemiological model for an immunizing infection in a cohort which is in
equilibrium with respect to time. s(a) = probability of surviving the infection. (@) = force of infection; u(a) = death-
rate due to other diseases.

Fig. 1. Daniel Bernoulli (1700-1782). (Section from a painting by Nicolaus Grooth in 1760.)

In the 1700s Bernoulli created an age
structured Susceptible-Immune model
to estimate the change in life
expectancy if smallpox were
eradicated
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THEORETICAL MODELS

- Theoretical models, such as Bernoulli’s smallpox model have used to explore the
behavior and impact of epidemics in theoretical populations, where simulations are
run without one or more set of parameters that are not tied to a particular
real-world population




FULLY THEORETICAL

(1) N=S+I+R
2 %, N_BIS-4S
dt
(3) Q:BIS—'}/I—QI—(SI
dt
dR
(4) E —’7]—5R

Here S, I, and R are
fractions of the
population and
therefore can represent
any population




MODEL WITH REAL-WORLD

POPULATION

as

dt

dl

dt

= BIS — vl —al — 0ol

dR

dt

=uN — BIS — 685

=~ —0R

Set N equal to the
population under study.

S, I, and R initial
conditions can be fit to
data and/or we can
base them on real world
data
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ADDING DEMOGRAPHY

Demography may be added to models as covariates, fixed or time-varying
parameters, and/or constraints on initial conditions:

= population size

= births

= natural death (i.e., deaths from causes other than for the disease in study
= immigration

= emigration




ADDING REAL-WORLD POPULATION SIZE

Consider COVID-19 in NYC in March 2020.N = 8,461,961

(1) We can assume that everyone was susceptible at the time
SARS-CoV-2 came to NYC and there was initially one
infected

(2) @ — :U’N _ /BIS _ 5S > dat[1:10,c('date', "borough", "new.cases.corrected", "pop")]

dt date borough new.cases.corrected pop

6 3/2/20  total 0 8461961

12 3/3/20  total 0 8461961

dI 18 3/4/20  total 2 8461961

(3) — =BIS —~I — ol — 61 24 3/5/20 total 2 8461961
dt 30 3/6/20 total 7 8461961

36 3/7/20  total 0 8461961

42 3/8/20  total 4 8461961

dR 48 3/9/20 total 12 8461961

(4) — =~I — 4R 54 3/10/20  total 24 8461961
dt 60 3/11/20 total 13 8461961



ADDING REAL-WORLD BIRTHS & DEATHS

N = S -+ 1 -+ R « Now consider the birth rate and the natural death rate in
a population.

 Births can be added in as a rate or as a covariate time

dsS .
E :@N — BIS series.

* Non-specific mortality can be entered as a fixed or time
dI varying rate.

% — 6 1S — 71 —al * Incorporating data on time varying births and deaths is

particularly important over long time horizons when birth
dR _ .~
R s
dt

and death rate vary and the population size fluctuates
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Rise and fall of polio in the 20" century
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Rise and fall of polio

NY births (monthly)
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Incorporating data on births is important for capturing
time-varying birth rates

Birth data is important for studying multiple populations
where birth have spatial variation
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2 i BIOLOGY Long-term dynamics of measles in London
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Fig 1. The demographic, vaccination, and measles data analyzed. A) The observed population dynamics shown on a
yearly scale. The major demographic fluctuations to births (red) and population counts (green) caused by WWII can
be seen starting in 1940. B) Measles dynamics for London 1897-1991, shown on a weekly time scale with mortality
(red) until 1940, and incidence (blue) through 1990. Note the case data are shown on a square root scale. Unscaled data
are shown (inverted) in Fig 2.




ADDING REAL-WORLD IMMIGRATION &
EMIGRATION

* immigration and emigration are often used in coupled SIR models where multiple populations are
coupled via migration and SIR. Since the migration of infected individuals will have the most impact
on the system, we can explore an example of only tracking infection migration

ds dsS
40 _ N — BIS — 68 &0 _ N — BIS —
= BIS - uN — BIS — 65
1
% = BIS — I — al — 0l+eyly-e 1 CcZi_t = BIS — I — ol — 0l +e1 ¢yl
dR dR
g ~ ok !
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ADDING COVARIATES

- Covariates are time series data or time-varying functions put into the
model that covary with the infection process

= Seasonal covariates are common 1n models of recurrent epidemics

= covariates may represent behavioral changes, economic changes,
interventions (essentially any time varying elements important that
impact disease dynamics other than demography)




SEASONAL FORCING OF
TRANSMISSION

-Transmission may be seasonally forced via environmental
conditions, host behavior, and/or host physiology

-Common seasonal forcing include term-time forcing based
on school terms in childhood disease models, as well as
climate and weather forcing for infections whose
transmission 1s sensitive to environmental conditions




a) Influenza Virus Transmission
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SCHOOL TERMS

s1(a)

School terms can be
added into models of
childhood disease
transmission to
modulate Beta(t)
seasonally.

B-splines can also be
uses to estimate the
seasonal
transmission rate as
shown here for
chickenpox in
Thailand

Bakker et al. Amer ] Epi 2021
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Socioeconomic Disparities in Subway Use and COVID-19 Outcomes in
New York City

Karla Therese L. Sy*, Micaela E. Martinez*, Benjamin Rader, and Laura F. White

Social-distancing fatigue: Evidence from real-time crowd-sourced
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VACCINATION UPTAKE

summertime polio epidemics

IPV was initially
studied and
rolled-out in 2nd
and 3rd graders
betore

expanding
1910 1920 1930 194:;r 1950 across age
TP e ’ e groups and
eventually
becoming an
infant vaccine
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VACCINATION UPTAKE

IPV & OPV coverage by age
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MODEL IS FIT TO CASE DATA
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MAXIMUM LIKELIHOOD VIA
ITERATED PARTICLE FILTERING
(MIF)

Natural Selection on Parameter , ,
* MIF is an algorithm that can be

Sets
used to search parameter space to
/ parameter sets maximize likelihood
' ' ‘ ‘ ‘ * The “fitness” of each parameter set
After selection is the likelihood of the data given
‘ ‘ ‘ the model with that parameter set,
L(®) = p(y|©)

After reproduction @m)

Maximum likelihood estimate (MLE)
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Likelihood Estimation

 Under such conditions, Maximum Likelihood
Estimate, MLE, is simply parameter set with smallest

deviation from data

* Equivalent to using least square errors, to decide on
goodness of fit

— Least Squares Statistic = SSE = 2(D. — M.)2

 Then, minimize SSE to arrive at MLE




Log Likelihood

MAXIMUM LIKELIHOOD VIA
ITERATED PARTICLE FILTERING
(MIF)

e MIF is an algorithm that
. can be used to search
parameter space to
maximize likelihood
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SIMULATING FROM THE MLE
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We can obtain the observed dynamics by
simulating forward from initial conditions
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MODEL VALIDATION

" - fitted data el
1l - = 11to1 '
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MODEL VALIDATION

out-of-fit predictions 4;,
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One-step-ahead
predictions predict
cases at time t using:

Model + MLE +
cases t+...+ cases_,




VACCINATION UPTAKE

(a) US

15000

pre—vaccine IPV

By having high quality

vaccine uptake covariate

data for IPV, we were

l ‘ | able to infer that it
reduces transmission by

69%
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OTHER COVARIATES

- Report rate (reporting system, healthcare infrastructure, etc.)
- Treatment

- Interventions (e.q., bed nets, social distancing, quarantine, etc.)




